
The Android Platform Security Model∗

René Mayrhofer

Google

rmayrhofer@google.com

Jeffrey Vander Stoep

Google

jeffv@google.com

Chad Brubaker

Google

cbrubaker@google.com

Nick Kralevich

Google

nnk@google.com

ABSTRACT
Android is the most widely deployed end-user focused operating

system. With its growing set of use cases encompassing commu-

nication, navigation, media consumption, entertainment, finance,

health, and access to sensors, actuators, cameras, or microphones,

its underlying security model needs to address a host of practi-

cal threats in a wide variety of scenarios while being useful to

non-security experts. The model needs to strike a difficult balance

between security, privacy, and usability for end users, assurances

for app developers, and system performance under tight hardware

constraints. While many of the underlying design principles have

implicitly informed the overall system architecture, access con-

trol mechanisms, and mitigation techniques, the Android security

model has previously not been formally published. This paper aims

to both document the abstract model and discuss its implications.

Based on a definition of the threat model and Android ecosystem

context in which it operates, we analyze how the different secu-

rity measures in past and current Android implementations work

together to mitigate these threats. There are some special cases

in applying the security model, and we discuss such deliberate

deviations from the abstract model.

KEYWORDS
Android, security, operating system, informal model

1 INTRODUCTION
Android is, at the time of this writing, the most widely deployed

end-user operating system. With more than 2 billion monthly ac-

tive devices [9] and a general trend towards mobile use of Internet

services, Android is now the most common interface for global

users to interact with digital services. Across different form factors

(including e.g. phones, tablets, wearables, TV, Internet-of-Things,

automobiles, and more special-use categories) there is a vast – and

still growing – range of use cases from communication, media

consumption, and entertainment to finance, health, and physical

sensors/actuators. Many of these applications are increasingly se-

curity and privacy critical, and Android as an OS needs to provide

sufficient and appropriate assurances to users as well as developers.

To balance the different (and sometimes conflicting) needs and

wishes of users, application developers, content producers, service

providers, and employers, Android is fundamentally based on a

∗
Last updated in March 2019 based on Android 9.0 as released.

multi-party consent
1
model: an action should only happen if all

involved parties consent to it. If any party does not consent, the

action is blocked. This is different to the security models that more

traditional operating systems implement, which are focused on user

access control and do not explicitly consider other stakeholders.

While themulti-partymodel has implicitly informed architecture

and design of the Android platform from the beginning, it has

been refined and extended based on experience gathered from past

releases. This paper aims to both document the Android security

model and systematically analyze its implications in the context

of ecosystem constraints and historical developments. Specifically,

we make the following contributions:

(1) Wemotivate and for the first time define the Android security

model based on security principles and the wider context

in which Android operates. Note that the core three-party

consent model described and analyzed in this paper has been

implicitly informing Android security mechanisms since the

earliest versions, and we therefore systematize knowledge

that has, in parts, existed before, but that was not formally

published so far.

(2) We define the threat model and how the security model

addresses it and discuss implications as well as necessary

special case handling.

(3) We explain how AOSP (Android Open Source Project, the

reference implementation of the Android platform) enforces

the security model based on multiple interacting security

measures on different layers.

(4) We identify currently open gaps and potential for future

improvement of this implementation.

This paper focuses on security and privacy measures in the An-

droid platform itself, i.e. code running on user devices that is part

of AOSP. There are complementary security services in the form

of Google Play Protect (GPP) scanning applications submitted to

Google Play and on-device (Verify Apps or Safe Browsing as opt-in

services) as well as Google Play policy and other legal frameworks.

These are out of scope of the current paper, but are covered by

related work [6, 28, 50, 93]. However, we explicitly point out one

policy change in Google Play with potentially significant positive

effects for security: Play now requires that new apps and app up-

dates target a recent Android API level, which will allow Android

to deprecate and remove APIs known to be abused or that have had

security issues in the past [35].

1
Throughout the paper, the term ‘consent’ is used to refer to various technical methods

of declaring or enforcing a party’s intent, rather than the legal requirement or standard

found in many privacy legal regimes around the world.

1

ar
X

iv
:1

90
4.

05
57

2v
1 

 [
cs

.C
R

] 
 1

1 
A

pr
 2

01
9



René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker, and Nick Kralevich

In the following, we will first introduce Android security prin-

ciples, and the ecosystem context and threat analysis that are the

basis of the Android security model (Section 2). Then, we define

the central security model (Section 3) and its implementation in the

form of OS architecture and enforcement mechanisms on different

OS layers (Section 4). Note that all implementation specific sections

refer to Android Pie (9.0) at the time of its initial release unless

mentioned otherwise (cf. [79]). We will refer to earlier Android ver-

sion numbers instead of their code names: 4.1–4.3 (Jelly Bean), 4.4

(KitKat), 5.x (Lollipop), 6.x (Marshmallow), 7.x (Nougat), 8.x (Oreo).

All tables are based on an analysis of security relevant changes to

the whole AOSP code base between Android releases 4.x and 9.0

(inclusive), spanning about 7 years of code evolution. Finally, we

discuss special cases (Section 5) and related work in terms of other

security models (Section 6).

2 ANDROID BACKGROUND
Before introducing the security model, we explain the context in

which it needs to operate, both in terms of ecosystem requirements

and platform security principles.

2.1 Ecosystem context
Some of the design decisions need to be put in context of the larger

ecosystem, which does not exist in isolation. A successful ecosystem

is one where all parties benefit when it grows, but also requires a

minimum level of mutual trust. This implies that a platform must

create safe-by-default environments where the main parties (end

user, application developer, operating system) can define mutually

beneficial terms of engagement. If these parties cannot come to an

agreement, then the most trust building operation is to disallow

the action (default-deny). The Android platform security model

introduced below is based on this notion.

This section is not comprehensive, but briefly summarizes those

aspects of the Android ecosystem that have direct implications to

the security model:

Android is an end user focused operating system. Although An-

droid strives for flexibility, the main focus is on typical users. The

obvious implication is that, as a consumer OS, it must be useful to

users and attractive to developers.

The end user focus implies that user interfaces and workflows

need to be safe by default and require explicit intent for any actions

that could compromise security or privacy. This also means that

the OS must not offload technically detailed security or privacy

decisions to non-expert users who are not sufficiently skilled or

experienced to make them [5].

The Android ecosystem is immense. Different statistics show that

in the last few years, the majority of a global, intensely diverse

user base already used mobile devices to access Internet resources

(i.e. 63% in the US [1], 56% globally [2], with over 68% in Asia and

over 80% in India). Additionally, there are hundreds of different

OEMs (Original Equipment Manufacturers, i.e. device manufactur-

ers) making tens of thousands of Android devices in different form

factors [80] (including, but not limited to, standard smartphones

and tablets, watches, glasses, cameras and many other Internet of

things device types, handheld scanners/displays and other special-

purpose worker devices, TVs, cars, etc.). Some of these OEMs do

not have detailed technical expertise, but rely on ODMs (Original

Device Manufacturers) for developing hardware and firmware and

then re-package or simply re-label devices with their own brand.

Only devices shipping with Google services integration need to

get their firmware certified, but devices simply based off AOSP can

be made without permission or registration. Therefore, there is no

single register listing all OEMs, and the list is constantly changing

with new hardware concepts being continuously developed. One

implication is that changing APIs and other interfaces can lead to

large changes in the device ecosystem and take time to reach most

of these use cases.

However, devices using Android as a trademarked name to ad-

vertise their compatibility with Android apps need to pass the

Compatibility Test Suite (CTS). Developers rely on this compati-

bility when writing apps for this wide variety of different devices.

In contrast to some other platforms, Android explicitly supports

installation of apps from arbitrary sources, which led to the devel-

opment of different app stores and the existence of apps outside

of Google Play. Consequently, there is a long tail of apps with a

very specific purpose, being installed on only few devices, and/or

targeting old Android API releases. Definition of and changes to

APIs need to be considerate of the huge number of applications

that are part of the Android ecosystem.

Apps can be written in any language. As long as apps interface
with the Android framework using the well-defined Java language

APIs for process workflow, they can be written in any programming

language, with or without runtime support, compiled or interpreted.

Android does not currently support non-Java language APIs for

the basic process lifecycle control, because they would have to

be supported in parallel, making the framework more complex

and therefore more error-prone. Note that this restriction is not

directly limiting, but apps need to have at least a small Java language

wrapper to start their initial process and interface with fundamental

OS services. The important implication of this flexibility for security

mechanisms is that they cannot rely on compile-time checks or any

other assumptions on the build environment. Therefore, Android

security needs to be based on runtime protections around the app

boundary.

2.2 Android security principles
From the start, Android has assumed a few basic security and pri-

vacy principles that can be seen as an implicit contract between

many parties in this open ecosystem:

Actors control access to the data they create. Any actor that creates
a data item is implicitly granted control over this particular instance

of data representation. Note that this refers to the technical act of

protecting data, either on the filesystem or in memory — but does

not automatically imply ownership over data in the legal sense.

Consent is informed and meaningful. Actors consenting to any
action must be empowered to base their decision on information

about the action and its implications and must have meaningful

ways to grant or deny this consent. This applies to both users and

developers, although very different technical means of enforcing

2



The Android Platform Security Model

(lack of) consent apply. Consent is not only required from the actor

that created a data item, but from all involved actors. Consent

decisions should be enforced and not self-policed.

Safe by design/default. Components should be safe by design.

That is, the default use of an operating system component or service

should always protect security and privacy assumptions, potentially

at the cost of blocking some use cases. This principle applies to mod-

ules, APIs, communication channels, and generally to interfaces

of all kinds. When variants of such interfaces are offered for more

flexibility (e.g. a second interface method with more parameters to

override default behavior), these should be hard to abuse, either un-

intentionally or intentionally. Note that this architectural principle

targets developers, which includes devicemanufacturers, but implic-

itly includes users in how security is designed and presented in user

interfaces. Android targets a wide range of developers and inten-

tionally keeps barriers to entry low for app development. Making

it hard to abuse APIs not only guards against malicious adversaries,

but also mitigates genuine errors resulting e.g. from incomplete

knowledge of an interface definition or caused by developers lack-

ing experience in secure system design. As in the defense in depth

approach, there is no single solution to making a system safe by

design. Instead, this is considered a guiding principle for defining

new interfaces and refining – or, when necessary, deprecating and

removing – existing ones.

Defense in depth. A robust security system is not sufficient if

the acceptable behavior of the operating system allows an attacker

to accomplish all of their goals without bypassing the security

model (e.g. ransomware encrypting all files it has access to under

the access control model). Specifically, violating any of the above

principles should require such bypassing of controls on-device (in

contrast to relying on off-device verification e.g. at build time).

Therefore, the primary goal of any security system is to enforce

its model. For Android operating in a multitude of environments

(see below for the threat model), this implies an approach that does

not immediately fail when a single assumption is violated or a

single implementation bug is found, even if the device is not up

to date. Defense in depth is characterized by rendering individual

vulnerabilities more difficult or impossible to exploit, and increasing

the number of vulnerabilities required for an attacker to achieve

their goals. We primarily adopt four common security strategies to

prevent adversaries from bypassing the security model: isolation
and containment, exploit mitigation, integrity, and patching/updates.
Their implementation will be discussed in more detail in section 4.

2.3 Threat model
Threat models for mobile devices are different from those com-

monly used for desktop or server operating systems for two major

reasons: by definition, mobile devices are easily lost or stolen, and

they connect to untrusted networks as part of their expected usage.

At the same time, by being close to users at most times, they are

also exposed to even more privacy sensitive data than many other

categories of devices. Recent work [73] previously introduced a lay-

ered threat model for mobile devices which we adopt for discussing

the Android security model within the scope of this paper:

Adversaries can get physical access to Android devices. For all
mobile and wearable devices, we have to assume that they will

potentially fall under physical control of adversaries at some point.

The same is true for other Android form factors such as things,

cars, TVs, etc. Therefore, we assume Android devices to be either

directly accessible to adversaries or to be in physical proximity to

adversaries as an explicit part of the threat model. This includes

loss or theft, but also multiple (benign but potentially curious) users

sharing a device (such as a TV or tablet). We derive specific threats

due to physical or proximal access:

T1 Powered-off devices under complete physical control of an

adversary (with potentially high sophistication up to nation

state level attackers), e.g. border control or customs checks.

T2 Screen locked devices under complete physical control of an

adversary, e.g. thieves trying to exfiltrate data for additional

identity theft.

T3 Screen unlocked (shared) devices under control of an autho-

rized but different user, e.g. intimate partner abuse, voluntary

submission to a border control or customs check

T4 (Screen locked or unlocked) devices in physical proximity

to an adversary (with the assumed capability to control all

available radio communication channels, including cellu-

lar, WiFi, Bluetooth, GPS, NFC, and FM), e.g. direct attacks

through Bluetooth [30]. Although NFC could be considered

to be a separate category to other proximal radio attacks

because of the scale of distance, we still include it in the

threat class of proximity instead of physical control.

Network communication is untrusted. The standard assumption

of network communication under complete control of an adversary

certainly also holds for Android devices. This includes the first hop

of network communication (e.g. captive WiFi portals breaking TLS

connections andmalicious fake access points) as well as other points

of control (e.g. mobile network operators or national firewalls),

summarized in the usual Dolev-Yao model [40] with additional

relay threats for short-range radios (e.g. NFC or BLE wormhole

attacks). For practical purposes, we mainly consider two network-

level threats:

T5 Passive eavesdropping and traffic analysis, including track-

ing devices within or across networks, e.g. based on MAC

address or other device network identifiers.

T6 Active manipulation of network traffic, e.g. MITM on TLS

connections.

These two threats are different from [T4] (proximal radio attacks)

in terms of scalability of attacks. Controlling a single choke point

in a major network can be used to attack a large number of devices,

while proximal (last hop) radio attacks require physical proximity

to target devices.

Untrusted code is executed on the device. One fundamental differ-

ence to other mobile operating systems is that Android intentionally

allows (with explicit consent by end users) installation of applica-

tion code from arbitrary sources, and does not enforce vetting of

apps by a central instance. This implies attack vectors on multiple

levels (cf. [73]):

T7 Abusing APIs supported by the OS with malicious intent,

e.g. spyware.

3



René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker, and Nick Kralevich

T8 Exploiting bugs in the OS, e.g. kernel, drivers, or system

services [36–38, 90].

T9 Abusing APIs supported by other apps installed on the

device [89].

T10 Untrusted code from the web (i.e. JavaScript) is executed

without explicit consent.

T11 Mimicking system or other app user interfaces to con-

fuse users (based on the knowledge that standard in-band

security indicators are not effective [39, 81]), e.g. to input

PIN/password into a malicious app [49].

T12 Reading content from system or other app user interfaces,

e.g. to screen-scrape confidential data from another app [58,

63].

T13 Injecting input events into system or other app user inter-

faces [51].

Untrusted content is processed by the device. In addition to di-

rectly executing untrusted code, devices process a wide variety of

untrusted data, including rich (in the sense of complex structure)

media. This directly leads to threats concerning processing of data

and metadata:

T14 Exploiting code that processes untrusted content in the

OS or apps, e.g. in media libraries [88]. This can be both a

local as well as a remote attack surface, depending on where

input data is taken from.

T15 Abusing unique identifiers for targeted attacks (which

can happen even on trusted networks), e.g. using a phone

number or email address for spamming or correlation with

other data sets, including locations.

3 THE ANDROID PLATFORM SECURITY
MODEL

The basic security model described in this section has informed

the design of Android, and has been refined but not fundamentally

changed. Given the ecosystem context and general Android princi-

ples explained above, the Android security model balances security

and privacy requirements of users with security requirements of

applications and the platform itself. The threat model described

above includes threats to all stakeholders, and the security model

and its enforcement by the Android platform aims to address all of

them. The Android platform security model is informally defined

by 5 rules:

1○ Three party consent. No action should be executed unless

all three main parties agree — i.e. user, platform, and developer
(implicitly representing stake holders such as content producers and

service providers). Any one party can veto the action. This three-

party consent spans the traditional two dimensions of subjects

(users and application processes) vs. objects (files, network sockets

and IPC interfaces, memory regions, virtual data providers, etc.)

that underlie most security models (e.g. [91]). Focusing on (regular

and pseudo) files as the main category of objects to protect, the

default control over these files depends on their location and which

party created them:

• Data in shared storage is controlled by users.

• Data in private app directories and app virtual address space

is controlled by apps.

• Data in special system locations is controlled by the platform

(e.g. list of granted permissions).

However, it is important to point out that, under three party consent,

even if one party primarily controls a data item, it may only act on

it if the other two parties consent. Control over data also does not

imply ownership (which is a legal concept rather than a technical

one and therefore outside the scope of an OS security model).

Note that there are corner cases in which only two parties may

need to consent (for actions in which the user only uses platform/OS

services without involvement of additional apps) or a fourth party

may be introduced (e.g. on devices or profiles controlled by a mobile

device management, this policy is also considered for consenting

to an action).

2○ Open ecosystem access. Both users and developers are part of

an open ecosystem that is not limited to a single application store.

Central vetting of developers or registration of users is not required.

This aspect has an important implication for the security model:

generic app-to-app interaction is explicitly supported. Instead of

creating specific platform APIs for every conceivable workflow,

app developers are free to define their own APIs they offer to other

apps.

3○ Security is a compatibility requirement. The security model

is part of the Android specification, which is defined in the Com-

patibility Definition Document (CDD) [10] and enforced by the

Compatibility (CTS), Vendor (VTS), and other test suites. Devices

that do not conform to CDD and do not pass CTS are not Android.

Within the scope of this paper, we define rooting as modifying the

system to allow starting processes that are not subject to sandbox-

ing and isolation. Such rooting, both intentional and malicious, is a

specific example of a non-compliant change which violates CDD.

As such, only CDD-compliant devices are considered. While many

devices support unlocking their bootloader and flashing modified

firmware
2
, such modifications may be considered incompatible

under CDD if security assurances do not hold. Verified boot and

hardware key attestation can be used to validate if currently run-

ning firmware is in a known-good state, and in turn may influence

consent decisions by users and developers.

4○ Factory reset restores the device to a safe state. In the event

of security model bypass leading to a persistent compromise, a

factory reset, which wipes/reformats the writable data partitions,

returns a device to a state that depends only on integrity protected

partitions. In other words, system software does not need to be

re-installed, but wiping the data partition(s) will return a device

to its default state. Note that the general expectation is that the

read-only device software may have been updated since originally

taking it out of the box, which is intentionally not downgraded by

factory reset. Therefore, more specifically, factory reset returns an

Android device to a state that only depends on system code that

is covered by Verified Boot, but does not depend on writable data

partitions.

2
Google Nexus and Pixel devices as well as many others support the standard fastboot
oem unlock command to allow flashing any firmware images to actively support

developers and power users. However, executing this unlocking workflow will forcibly

factory reset the device (wiping all data) to make sure that security guarantees are not

retroactively violated for data on the device.

4



The Android Platform Security Model

5○ Applications are security principals. The main difference to

traditional operating systems that run apps in the context of the

logged-in user account is that Android apps are not considered

to be fully authorized agents for user actions. In the traditional

model typically implemented by server and desktop OS, there is

often no need to even exploit the security boundary because run-

ning malicious code with the full permissions of the main user is

sufficient for abuse. Examples are many, including file encrypting

ransomware [59, 84] (which does not violate the OS security model

if it simply re-writes all the files the current user account has access

to) and private data leakage (e.g. browser login tokens [70], history

or other tracking data, cryptocurrency wallet keys, etc.).

Summary. Even though, at first glance, the Android security

model grants less power to users compared to traditional operating

systems that do not impose a multi-party consent model, there

is an immediate benefit to end users: if one app cannot act with

full user privileges, the user cannot be tricked into letting it access

data controlled by other apps. In other words, requiring application

developer consent – enforced by the platform – helps avoid user

confusion attacks and therefore better protects private data.

4 IMPLEMENTATION
Android’s security measures implement the security model and are

designed to address the threats outlined above. In this section we

describe security measures and indicate which threats theymitigate,

taking into account the architectural security principles of ‘defense

in depth’ and ‘safe by design’.

4.1 Consent
Methods of giving meaningful consent vary greatly between actors,

as well as potential issues and constraints.

4.1.1 Developer(s)
Unlike traditional desktop operating systems, Android ensures

that the developer consents to actions on their app or their app’s

data. This prevents large classes of abusive behavior where unre-

lated apps inject code into or steal data from other applications on

a user’s device.

Consent for developers, unlike the user, is enshrined via the code

they sign and the system executes. For example, an app can consent

to the user sharing its data by providing a respective mechanism,

e.g. based on OS sharing methods such as built-in implicit Intent
resolution chooser dialogs [11]. Another example is debugging: as

assigned virtual memory content is controlled by the app, debug-

ging from an external process is only allowed if an app consents to

it (specifically through the debuggable flag in the app manifest).

Meaningful consent then is ensuring that APIs and their behav-

iors are clear and the developer understands how their application

is interacting with or providing data to other components. Addi-

tionally, we assume that developers of varying skill levels may not

have a complete understanding of security nuances, and as a result

APIs must also be safe by default and difficult to incorrectly use in

order to avoid accidental security regressions.

In order to ensure that it is the app developer and not another

party that is consenting, applications are signed by the developer

(or when using key rotation functionality, a key that was previ-

ously granted this ability by the app). This prevents third parties

— including the app store — from replacing or removing code or

resources in order to change the app’s intended behavior. However,

the app signing key is trusted implicitly upon installation, so re-

placing or modifying apps in transit (e.g. when side-loading apps)

is currently out of scope of the platform security model and may

violate developer consent.

4.1.2 The Platform
While the platform, like the developer, consents via code signing,

the goals are quite different: the platform acts to ensure that the

system functions as intended. This includes enforcing regulatory or

contractual requirements as well as taking an opinionated stance

on what kinds of behaviors are acceptable. Platform consent is

enforced via Verified Boot (see below for details) protecting the

system images from modification as well as platform applications

using the platform signing key and associated permissions, much

like applications.

4.1.3 User(s)
Achieving meaningful user consent is by far the most difficult

and nuanced challenge in determining meaningful consent. Some

of the guiding principles have always been core to Android, while

others were refined based on experiences during the 10 years of

development so far:

• Avoid over-prompting. Over-prompting the user leads to

prompt fatigue and blindness (cf. [7]). Prompting the user

with a yes/no prompt for every action does not lead to mean-

ingful consent as users become blind to the prompts due to

their regularity.

• Prompt in a way that is understandable. Users are as-

sumed not to be experts or understand nuanced security

questions (cf. [48]). Prompts and disclosures must be phrased

in a way that a non-technical user can understand the effects

of their decision.

• Prefer pickers and transactional consent overwide gran-
ularity. When possible, we limit access to specific items

instead of the entire set. For example, the Contacts Picker

allows the user to select a specific contact to share with the

application instead of using the Contacts permission. These

both limit the data exposed as well as present the choice to

the user in a clear and intuitive way.

• The OS must not offload a difficult problem onto the
user.Android regularly takes an opinionated stance on what
behaviors are too risky to be allowed and may avoid adding

functionality that may be useful to a power user but danger-

ous to an average user.

• Provide users away to undopreviouslymade decisions.
Users canmakemistakes. Even themost security and privacy-

savvy users may simply press the wrong button from time

to time, which is even more likely when they are being tired

or distracted. To mitigate against such mistakes or the user

simply changing their mind, it should be easy for the user to

undo a previous decision whenever possible. This may vary

from denying previously granted permissions to removing

an app from the device entirely.

5



René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker, and Nick Kralevich

Additionally, it is critical to ensure that the user who is con-

senting is the legitimate user of the device and not another person

with physical access to the device ([T1]-[T3]), which directly relies

on the next component in the form of the Android lock screen.

Implementing model rule 1○ is cross-cutting on all system layers.

We use two examples to better describe the consent parties:

• Sharing data from one app to another requires:

– user consent through the user selecting a target app in the

share dialog;

– developer consent of the source app by initiating the share

with the data (e.g. image) they want to allow out of their

app;

– developer consent of the target app by accepting the shared

data; and

– platform consent by arbitrating the data access and ensur-

ing that the target app cannot access any other data than

the explicitly shared item through the same link, which

forms a temporary trust relationship between two apps.

• Changing mobile network operator (MNO) configuration

option requires:

– user consent by selecting the options in a settings dialog;

– (MNO app) developer consent by implementing options

to change these configuration items, potentially querying

policy on backend systems; and

– platform consent by verifying e.g. policies based on coun-

try regulations and ensuring that settings do not impact

platform or network stability.

4.2 Authentication
Authentication is a gatekeeper function for ensuring that a system

interacts with its owner or legitimate user. On mobile devices the

primary means of authentication is via the lockscreen. Note that a

lockscreen is an obvious trade-off between security and usability:

On the one hand, users unlock phones for short (10-250 seconds)

interactions about 50 times per day on average and even up to 200

times in exceptional cases [45, 56], and the lockscreen is obviously

an immediate hindrance to frictionless interaction with a device [54,

55]. On the other hand, devices without a lockscreen are immedi-

ately open to being abused by unauthorized users ([T1]-[T3]), and

the OS cannot reliably enforce user consent without authentication.

In their current form, lockscreens on mobile devices largely en-

force a binary model — either the whole phone is accessible, or the

majority of functions (especially all security or privacy sensitive

ones) are locked. Neither long, semi-random alphanumeric pass-

words (which would be highly secure but not usable for mobile

devices) nor swipe-only lockscreens (usable, but not offering any

security) are advisable. Therefore, it is critically important for the

lockscreen to strike a reasonable balance between security and

usability.

Towards this end, recent Android releases use a tiered authentica-

tion model where a secure knowledge-factor based authentication

mechanism can be backed by convenience modalities that are func-

tionally constrained based on the level of security they provide. The

added convenience afforded by such a model helps drive lockscreen

adoption and allows more users to benefit both from the imme-

diate security benefits of a lockscreen and from features such as

file-based encryption that rely on the presence of an underlying

user-supplied credential. As an example of how this helps drive

lockscreen adoption, starting with Android 7.x we see that 77%

of devices with fingerprint sensors have a secure lockscreen en-

abled, while only 50% of devices without fingerprints have a secure

lockscreen
3
.

As of Android 9.0, the tiered authentication model splits modali-

ties into three tiers.

• PrimaryAuthenticationmodalities are restricted to knowledge-

factors and by default include PIN, pattern, and password.

Primary authentication provides access to all functions on

the phone.

• Secondary Authenticationmodalities are required to be ‘strong’

biometrics as defined by their spoof and imposter accep-

tance rates [78]. Accounting for an explicit attacker in the

threat model helps reduce the potential for insecure unlock

methods [75]. Secondary modalities are also prevented from

performing some actions — for example, they do not de-

crypt file-based or full-disk encrypted user data partitions

(such as on first boot) and are required to fallback to primary

authentication once every 72 hours.

• Tertiary Authentication modalities are those that are either

weak biometrics that do not meet the spoofability bar or alter-

nate modalities such as unlocking when paired with a trusted

Bluetooth device, or unlocking at trusted locations. Tertiary

modalities are subject to all the constraints of secondary

modalities, but are additionally restricted from granting ac-

cess to Keymaster auth-bound keys (such as those required

for payments) and also require a fallback to primary authen-

tication after any 4-hour idle period.

The Android lockscreen is currently implemented by Android

system components above the kernel, specifically Keyguard and the
respective unlock methods (some of which may be OEM specific).

User knowledge factors of secure lockscreens are passed on to

Gatekeeper/Weaver (explained below) both for matching them with

stored templates and deriving keys for storage encryption. One

implication is that a kernel compromise could lead to bypassing

the lockscreen — but only after the user has logged in for the first

time after reboot.

4.3 Isolation and Containment
One of the most important parts of enforcing the security model is

to enforce it at runtime against potentially malicious code already

running on the device. The Linux kernel provides much of the foun-

dation and structure upon which Android’s security model is based.

Process isolation provides the fundamental security primitive for

sandboxing. With very few exceptions, the process boundary is

where security decisions are made and enforced — Android inten-

tionally does not rely on in-process compartmentalization such as

the Java security model. The security boundary of a process is com-

prised of the process boundary and its entry points and implements

rule 2○: an app does not have to be vetted or pre-processed to run

within the sandbox. Strengthening this boundary can be achieved

by a number of means such as:

3
These numbers are from internal analysis that has not yet been formally published.

6



The Android Platform Security Model

• Access control: adding permission checks, increasing the

granularity of permission checks, or switching to safer de-

faults (e.g. default deny).

• Attack surface reduction: reducing the number of entry

points i.e. principle of least privilege.

• Containment: isolating and de-privileging components, par-

ticularly ones that handle untrusted content.

• Architectural decomposition: breaking privileged processes

into less privileged components and applying attack surface

reduction.

• Separation of concerns: avoiding duplication of functionality.

In this section we describe the various sandboxing and access

control mechanisms used on Android on different layers and how

they improve the overall security posture.

4.3.1 Permissions
Android uses three distinct permission mechanisms to perform

access control:

• DiscretionaryAccessControl (DAC): Processesmay grant

or deny access to resources that they own by modifying per-

missions on the object (e.g. granting world read access) or

by passing a handle to the object over IPC. On Android this

is implemented using UNIX-style permissions that are en-

forced by the kernel and URI permission grants. Processes

running as the root user often have broad authority to over-

ride UNIX permissions (subject to MAC permissions – see

below). URI permission grants provide the core mechanism

for app to app interaction allowing an app to grant selective

access to pieces of data it owns.

• Mandatory Access Control (MAC): The system has a se-

curity policy that dictates what actions are allowed. Only

actions explicitly granted by policy are allowed. On An-

droid this is implemented using SELinux [87] and primarily

enforced by the kernel. Android makes extensive use of

SELinux to protect system components and assert security

model requirements during compatibility testing.

• Android permissions gate access to sensitive data and

services. Enforcement is primarily done in userspace by

the data/service provider (with notable exceptions such as

INTERNET). Permissions are defined statically in an app’s

AndroidManifest.xml [12], though not all permissions re-

quested may be granted. Android 6.0 brought a major change

by no longer guaranteeing that all requested permissions

are granted when an application is installed. This was a di-

rect result of the realization that users were not sufficiently

equipped to make such a decision at installation time (cf. [47,

48, 82, 101]).

At a high level Android permissions fall into one of five

classes in increasing order of severity:

(1) Audit-only permissions: These are install time permissions

with the ‘normal’ protection level.

(2) Runtime permissions: These are permissions that the user

must approve as part of a runtime prompt dialog. These

permissions are guarding commonly used sensitive user

data, and depending on how critical they are for the cur-

rent functioning of an application, different strategies for

requesting them are recommended [24].

(3) Special Access Permissions: For permissions that expose

more or are higher risk than runtime permissions there

exists a special class of permissions with much higher

granting friction that the application cannot show a run-

time prompt for. In order for a user to allow an application

to use a special access permission the user must go to

settings and manually grant the permission to the appli-

cation.

(4) Privileged Permissions: These permissions are for pre-

installed privileged applications only and allow privileged

actions such as carrier billing.

(5) Signature Permissions: These permissions are only avail-

able to components signed with the same key as the com-

ponent which declares the permission e.g. the platform

signing key. They are intended to guard internal or highly

privileged actions, e.g. configuring the network interfaces.

Permission availability is defined by their protectionLevel
attribute [13] with two parts (the level itself and a number of

optional flags) which may broaden which applications may

be granted a permission as well as how they may request it.

The protection levels are:

– normal: Normal permissions are those that do not pose

much privacy or security risk and are granted automati-

cally at install time. These permissions are primarily used

for auditability of app behavior.

– dangerous: Permissions with this protectionLevel are
runtime permissions, and apps must both declare them in

their manifest as well as request users grant them during

use. These permissions, which are fairly fine-grained to

support auditing and enforcement, are grouped into logical

permissions using the permissionGroup attribute. When

requesting runtime permissions, the group appears as a

single permission to avoid over-prompting.

– signature: Applications can only be granted such permis-

sion if they are signed with the same key as the application

that defines the permission, which is the platform sign-

ing key for platform permission. These permissions are

granted at install time if the application is allowed to use

them.

Additionally, there are a number of protection flags that

modify the grantability of permissions. For example, the

BLUETOOTH_PRIVILEGED permission has a protectionLevel
of signature|privileged, with the privileged flag allow-

ing privileged applications to be granted the permission

(even if they are not signed with the platform key).

Each of the three permission mechanisms roughly aligns with

how one of the three parties grant consent (rule 1○). The platform

utilizes MAC, apps use DAC, and users consent by granting An-

droid permissions. Note that permissions are not intended to be a

mechanism for obtaining consent in the legal sense but a techni-

cal measure to enforce auditability and control. It is up to the app

developer processing personal user data to meet applicable legal

requirements.

4.3.2 Application sandbox
Android’s original DAC application sandbox separated apps from

each other and the system by providing each application with a

7



René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker, and Nick Kralevich

unique UNIX user ID (UID) and a directory owned by the app. This

approach was quite different from the traditional desktop approach

of running applications using the UID of the physical user. The

unique per-app UID simplifies permission checking and eliminates

racy per-process ID (PID) checks. Permissions granted to an app are

stored in a centralized location (/data/system/packages.xml). to
be queried by other services. For example, when an app requests

location from the location service, the location service queries the

permissions service to see if the requesting UID has been granted

the location permission.

The UID sandbox had a number of shortcomings. Processes

running as root were essentially unsandboxed and possessed ex-

tensive power to manipulate the system, apps, and private app

data. Likewise, processes running as the system UID were exempt

from Android permission checks and permitted to perform many

privileged operations. Use of DAC meant that apps and system

processes could override safe defaults and were more susceptible to

dangerous behavior, such as symlink following or leaking files/data

across security boundaries via IPC or fork/exec. Additionally, DAC
mechanisms can only apply to files on file systems that support

access controls lists (respectively simple UNIX access bits). The

main implication is that the FAT family of file systems, which is still

commonly used on extended storage such as (micro-) SD cards or

media connected through USB, does not directly support applying

DAC. On Android, each app has a well-known directory on external

storage devices, where the package name of the app is included

into the path (e.g. /sdcard/Android/data/com.example). Since
the OS already maintains a mapping from package name to UID, it

can assign UID ownership to all files in these well-known directo-

ries, effectively creating a DAC on a filesystem that doesn’t natively

support it. From Android 4.4 to Android 7.x, this mapping was im-

plemented through FUSE, while Android 8.0 and later implement

an in-kernel sdcardfs for better performance. Both are equivalent

in maintaining the mapping of app UIDs to implement effective

DAC.

Despite its deficiencies, the UID sandbox laid the groundwork

and is still the primary enforcement mechanism that separates

apps from each other. It has proven to be a solid foundation upon

which to add additional sandbox restrictions. These shortcomings

have been mitigated in a number of ways over subsequent releases,

partially through the addition of MAC policies but also including

many other mechanisms such as runtime permissions and attack

surface reduction (cf. Table 1).

Rooting, as defined above, has the main aim of enabling certain

apps and their processes to break out of this application sandbox

in the sense of granting “root” user privileges [57], which override

the DAC rules (but not automatically MAC policies, which led to

extended rooting schemes with processes intentionally exempt

from MAC restrictions). Malware may try to apply these rooting

approaches through temporary or permanent exploits and therefore

bypass the application sandbox.

4.3.3 Sandboxing system processes
In addition to the application sandbox, Android launched with

a limited set of UID sandboxes for system processes. Notably, An-

droid’s architects recognized the inherent risk of processing un-

trusted media content and so isolated the media frameworks into

UID AID_MEDIA. Other processes that warranted UID isolation in-

clude the telephony stack, WiFi, and Bluetooth (cf. Table 2).

4.3.4 Sandboxing the kernel
Security hardening efforts in Android’s userspace have increas-

ingly made the kernel a more attractive target for privilege escala-

tion attacks [95]. Hardware drivers provided by System on a Chip

(SoC) vendors account for the vast majority of kernel vulnerabilities

on Android [98]. Reducing app/system access to these drivers was

described above, but sandboxing code inside the kernel itself also

improved significantly over the various releases (cf. Table 3).

4.3.5 Sandboxing below the kernel
In addition to the kernel, the trusted computing base (TCB) on

Android devices starts with the boot loader (which is typically split

into multiple stages) and implicitly includes other components be-

low the kernel, such as the trusted execution environment (TEE),

hardware drivers, and userspace components init, ueventd, and
vold [25]. It is clear that the sum of all these creates sufficient com-

plexity that, given current state of the art, we have to assume bugs

in some of them. For highly sensitive use cases, even the mitigations

against kernel and system process bugs described above may not

provide sufficient assurance against potential vulnerabilities.

Therefore, we explicitly consider the possibility of a kernel com-

promise (e.g. through directly attacking some kernel interfaces

based on physical access in [T2]-[T4] or chaining together mul-

tiple bugs from user space code to reach kernel surfaces in [T8]),

misconfiguration (e.g. with incorrect or overly permissive SELinux

policies [34]), or bypass (e.g. by modifying the boot chain to boot

a different kernel with deactivated security policies) as part of

the threat model for some select scenarios. To be clear, with a

compromised kernel, Android no longer meets the compatibility

requirements and many of the security and privacy assurances for

users and apps no longer hold. However, we can still defend against

some threats even under this assumption:

• Keymaster implements the Android key store in TEE to

guard cryptographic key storage and use in the case of a

run-time kernel compromise [14]. That is, even with a fully

compromised kernel, an attacker cannot read key material

stored in Keymaster. Apps can explicitly request keys to

be stored in Keymaster, i.e. to be hardware-bound, to be

only accessible after user authentication (which is tied to

Gatekeeper/Weaver), and/or request attestation certificates

to verify these key properties [15], allowing verification of

compatibility in terms of rule 3○.

• Strongbox, specified starting with Android 9.0, implements

the Android keystore in separate tamper resistant hardware

(TRH) for even better isolation. This mitigates [T1] and [T2]

against strong adversaries, e.g. against cold boot memory

attacks [53] or hardware bugs such as Spectre/Meltdown [61,

69], Rowhammer [32, 99], or Clkscrew [92] that allow privi-

lege escalation even from kernel to TEE. From a hardware

perspective, the main application processor (AP) will always

have a significantly larger attack surface than dedicated

secure hardware. Adding a separate TRH affords another

sandboxing layer of defense in depth.

8



The Android Platform Security Model

Table 1: Application sandboxing improvements in Android releases

Release Improvement Threats mitigated
≤ 4.3 Isolated process: Apps may optionally run services in a process with no Android permissions and

access to only two binder services. For example, the Chrome browser runs its renderer in an isolated

process for rendering untrusted web content.

[T10] access to [T5]

[T8][T9][T12][T13]

5.x SELinux: SELinux was enabled for all userspace, significantly improving the separation between apps

and system processes. Separation between apps is still primarily enforced via the UID sandbox. A major

benefit of SELinux is the auditability/testability of policy. The ability to test security requirements

during compatibility testing increased dramatically with the introduction of SELinux.

[T8][T14]

5.x Webview moved to an updatable APK, independent of a full system OTA. [T10]

6.x Run time permissions were introduced, which moved the request for dangerous permission from install

to first use (cf. above description of permission classes).

[T7]

6.x Multi-user support: SELinux categories were introduced for a per-physical-user app sandbox. [T3]

6.x Safer defaults on private app data: App home directory moved from 0751 UNIX permissions to 0700
(based on targetSdkVersion).

[T9]

6.x SELinux restrictions on ioctl system call: 59% of all app reachable kernel vulnerabilities were through

the ioctl() syscall, and these restrictions limit reachability of potential kernel vulnerabilities from user

space code [95, 96].

[T8][T14]

6.x Removal of app access to debugfs (9% of all app-reachable kernel vulnerabilities). [T8][T14]

7.x hidepid=2: Remove /proc/<pid> side channel used to infer when apps were started. [T11]

7.x perf-event-hardening (11% of app reachable kernel vulnerabilities were reached via

perf_event_open()).
[T8]

7.x Safer defaults on /proc filesystem access. [T7][T11]

7.x MITM CA certificates are not trusted by default. [T6]

8.x Safer defaults on /sys filesystem access. [T7][T11]

8.x All apps run with a seccomp filter intended to reduce kernel attack surface. [T8][T14]

8.x Webviews for all apps move into the isolated process. [T10]

8.x Apps must opt-in to use cleartext network traffic. [T5]

9.0 Per-app SELinux sandbox (for apps with targetSdkVersion=P or greater). [T9][T11]

Table 2: System sandboxing improvements in Android releases

Release Improvement Threats mitigated
4.4 SELinux in enforcing mode: MAC for 4 root processes installd, netd, vold, zygote. [T7][T8][T14]

5.x SELinux: MAC for all userspace processes. [T7][T8]

6.x SELinux: MAC for all processes.

7.x Architectural decomposition of mediaserver. [T7][T8][T14]

7.x ioctl system call restrictions for system components [96]. [T7][T8][T14]

8.x Treble Architectural decomposition: Move HALs (Hardware Abstraction Layer components) into

separate processes, reduce permissions, restrict access to hardware drivers [33, 97].

[T7][T8][T14]

Table 3: Kernel sandboxing improvements in Android releases

Release Improvement Threats mitigated
5.x Privileged eXecute Never (PXN) [3]: Disallow the kernel from executing userspace. Prevents ‘ret2user’

style attacks.

[T8][T14]

6.x Kernel threads moved into SELinux enforcing mode, limiting kernel access to userspace files. [T8][T14]

8.x Privileged Access Never (PAN) and PAN emulation: Prevent the kernel from accessing any userspace

memory without going through hardened copy-*-user() functions [94].
[T8][T14]

Note that only storing and using keys in TEE or TRH does

not completely solve the problem of making them unusable

under the assumption of a kernel compromise: if an attacker

gains access to the low-level interfaces for communicating

directly with Keymaster or Strongbox, they can use it as an

oracle for cryptographic operations that require the private

key. This is the reason why keys can be authentication bound

and/or require user presence verification, e.g. by pushing a

9



René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker, and Nick Kralevich

hardware button that is detectable by the TRH to assure that

keys are not used in the background without user consent.

• Gatekeeper implements verification of user lock screen fac-

tors (PIN/password/pattern) in TEE and, upon successful

authentication, communicates this to Keymaster for releas-

ing access to authentication bound keys [16]. Weaver im-

plements the same functionality in TRH and communicates

with Strongbox. Specified for Android 9.0 and initially im-

plemented on the Google Pixel 2 and Pixel 3 phones, we also

add a property called ‘Insider Attack Resistance’ (IAR): with-

out knowledge of the user’s lock screen factor, an upgrade

to the Weaver/Strongbox code running in TRH will wipe

the secrets used for on-device encryption [74, 102]. That is,

even with access to internal code signing keys, existing data

cannot be exfiltrated without the user’s cooperation.

• Protected Confirmation, also introduced with Android

9.0 [17], partially mitigates [T11] and [T13]. In its current

scope, apps can tie usage of a key stored in Keymaster or

Strongbox to the user confirming (by pushing a physical but-

ton) that they have seen a message displayed on the screen.

Upon confirmation, the app receives a hash of the displayed

message, which can be used to remotely verify that a user

has confirmed the message. By controlling the screen output

through TEE when protected confirmation is requested by

an app, even a full kernel compromise (without user cooper-

ation) cannot lead to creating these signed confirmations.

4.4 Encryption of data at rest
A second element of enforcing the security model, particularly rules

1○ and 3○, is required when the main system kernel is not running

or is bypassed (e.g. by reading directly from non-volatile storage).

Full Disk Encryption (FDE) uses a credential protected key to

encrypt the entire user data partition. FDE was introduced in An-

droid 5.0, and while effective against [T1], it had a number of short-

comings. Core device functionality (such as emergency dialer, ac-

cessibility services, and alarms) were inaccessible until password

entry. Multi-user support introduced in Android 6.0 still required

the password of the primary user before disk access.

These shortcomings were mitigated by File Based Encryption

(FBE) introduced in Android 7.0. On devices with TEE or TRH, all

keys are derived within these secure environments, entangling the

user knowledge factor with hardware-bound random numbers that

are inaccessible to the Android kernel and components above.
4
FBE

allows individual files to be tied to the credentials of different users,

cryptographically protecting per-user data on shared devices [T3].

Devices with FBE also support a feature called Direct Boot which
enables access to emergency dialer, accessibility services, alarms,

and receiving calls all before the user inputs their credentials.

Note that encryption of data at rest helps significantly with

enforcing rule 4○, as effectively wiping user data only requires

to delete the master key material, which is much quicker and not

subject to the complexities of e.g. flash translation layer interactions.

4
A detailed specification and analysis of key entanglement is subject to related work

and currently in progress. A reference to this detail will be added to a later version of

this paper.

4.5 Encryption of data in transit
Android assumes that all networks are hostile and could be injecting

attacks or spying on traffic. In order to ensure that network level

adversaries do not bypass app data protections, Android takes the

stance that all network traffic should be end-to-end encrypted. Link

level encryption is insufficient. This primarily protects against [T5]

and [T6].

In addition to ensuring that connections use encryption, Android

focuses heavily on ensuring that the encryption is used correctly.

While TLS options are secure by default, we have seen that it is easy

for developers to incorrectly customize TLS in a way that leaves

their traffic vulnerable to MITM attacks [43, 44, 52]. Table 4 lists

recent improvements in terms of making network connections safe

by default.

4.6 Exploit mitigation
A robust security system should assume that software vulnerabili-

ties exist and actively defend against them. Historically, about 85%

of security vulnerabilities on Android result from unsafe memory

access (cf. [62, slide 54]). While this section primarily describes

mitigations against memory unsafety, we note that the best defense

is the memory safety offered by languages such as Java. Much of

the Android framework is written in Java, effectively defending

large swathes of the OS from entire categories of security bugs.

Android mandates the use of a number of mitigations including

ASLR [29, 86], RWX memory restrictions (e.g.W ⊕ X , cf. [85]),
and buffer overflow protections (such as stack-protector for the

stack and allocator protections for the heap). Similar protections

are mandated for Android kernels [94].

In addition to the mitigations listed above, Android is actively

rolling out additional mitigations, focusing first on code areas which

are remotely reachable (e.g. the media frameworks [26]) or have a

history of high severity security vulnerabilities (e.g. the kernel). An-

droid has pioneered the use of LLVM undefined behavior sanitizer

(UBSAN) in production devices to protect against integer overflow

vulnerabilities in the media frameworks and other security sensi-

tive components. Android is also rolling out LLVM Control Flow

Integrity (CFI) in the kernel and security sensitive userspace com-

ponents including media, Bluetooth, WiFi, NFC, and parsers [71].

These mitigation methods work in tandem with isolation and

containment mechanisms to form many layers of defense; even

if one layer fails, other mechanisms aim to prevent a successful

exploitation chain. Mitigation mechanisms also help to uphold

rules 2○ and 3○ without placing additional assumptions on which

languages apps are written in.

4.7 System integrity
Finally, system (sometimes also referred to device) integrity is an

important defense against attackers gaining a persistent foothold.

AOSP has supportedVerified Boot using the Linux kernel dm-verity
support since Android KitKat providing strong integrity enforce-

ment for Android’s Trusted Computing Base (TCB) and system

components to implement rule 4○. Verified Boot [19] has been man-

dated since Android Nougat (with an exemption granted to devices

which cannot perform AES crypto above 50MiB/sec.) and makes

modifications to the boot chain detectable by verifying the boot,

10



The Android Platform Security Model

Table 4: Network sandboxing improvements in Android releases

Release Improvement Threats mitigated
6.x usesCleartextTraffic in manifest to prevent unintentional cleartext connections [31]. [T5][T6]

7.x Network security config [18] to declaratively specify TLS and cleartext settings on a per-domain or

app-wide basis to customize TLS connections.

[T5][T6]

9.0 DNS-over-TLS [60] to reduce sensitive data sent over cleartext and made apps opt-in to using cleartext

traffic in their network security config.

[T5][T6]

TEE, and additional vendor/OEM partitions, as well as performing

on-access verification of blocks on the system partition [20]. That

is, attackers cannot permanently modify the TCB even after all pre-

vious layers of defense have failed, leading to a successful kernel

compromise. Note that this assumes the primary boot loader as

root of trust to still be intact. As this is typically implemented in a

ROM mask in sufficiently simple code, critical bugs at that stage

are less likely.

Additionally, rollback protection with hardware support pre-

vents attacks from flashing a properly signed but outdated system

image that has known vulnerabilities and could be exploited. Fi-

nally, the Verified Boot state is included in key attestation certifi-

cates (provided by Keymaster/Strongbox) in the deviceLocked and
verifiedBootState fields, which can be verified by apps as well as
passed onto backend services to remotely verify boot integrity [21].

Application integrity is enforced via APK signing [22]. Every

app is signed and an update can only be installed if the new APK is

signed with the same identity or by an identity that was delegated

by the original signer.

With Android 9.0, only updateable apps are not covered by Ver-

ified Boot. Integrity of updateable apps is checked by Android’s

PackageManager during installation/update. Integrity of firmware

for other CPUs (including, but not limited to, the various radio

chipsets, the GPU, touch screen controllers, etc.) is out of scope of

Android Verified Boot at the time of this writing, and is typically

handled by OEM-specific boot loaders.

4.8 Patching
Orthogonal to all the previous defense mechanisms, vulnerable

code should be fixed to close discovered holes in any of the layers.

Regular patching can be seen as another layer of defense. However,

shipping updated code to the huge and diverse Android ecosystem

is a challenge (which is one of the reasons for applying the defense

in depth strategy).

Starting in August 2015, Android has publicly released a monthly

security bulletin and patches for security vulnerabilities reported

to Google. To address ecosystem diversity, project Treble launched

with Android 8.0, with a goal of reducing the time/cost of updating

Android devices [72, 76].

In 2018, the Android Enterprise Recommended program as well

as general agreements with OEMs added the requirement of 90-day

guaranteed security updates [23].

5 SPECIAL CASES
There are some special cases that require intentional deviations

from the abstract security model to balance specific needs of various

parties. This section describes some of these but is not intended to

be a comprehensive list. One goal of defining the Android security

model publicly is to enable researchers to discover potential addi-

tional gaps by comparing the implementation in AOSP with the

model we describe, and to engage in conversation on those special

cases.

• Listing packages: App discovery is currently necessary for

direct app-to-app interaction which is derived from the open

ecosystem principle (rule 2○).

• VPNappsmaymonitor/blocknetwork traffic for other
apps: This is generally a deviation from the application sand-

box model since one app may see and impact traffic from

another app (developer consent). VPN apps are granted an

exemption because of the value they offer users, such as

improved privacy and data usage controls, and because user
consent is clear. For applications which use end-to-end en-

cryption, clear-text traffic is not available to the VPN applica-

tion, partially restoring the confidentiality of the application

sandbox.

• Backup:Data from the private app directory is backed up by

default. Apps may opt out by setting fields in their manifest.

• Enterprise:Android allows so-called Device Owner (DO) or
Profile Owner (PO) policies to be enforced by a Device Policy

Controller (DPC) app. A DO is installed on the primary/main

user account, while a PO is installed on a secondary user

that acts as a work profile. Work profiles allow separation

of personal from enterprise data on a single device and are

based on Android multi-user support. This separation is en-

forced by the same isolation and containment methods that

protect apps from each other but implement a significantly

stricter divide between the profiles [8].

A DPC introduces a fourth party to the consent model: only

if the policy allows an action (e.g. within the work profile

controlled by a PO) in addition to consent by all other par-

ties can it be executed. The distinction of personal and work

profile is enhanced by the recent support of different user

knowledge factors (handled by the lockscreen as explained

above in subsection 4.2), which lead to different encryption

keys for FBE. Note that on devices with a work profile man-

aged by PO but no full-device control (i.e. no DO), privacy

guarantees for the personal profile still need to hold under

this security model.

• Factory Reset Protection (FRP): is an exception to not

storing any persistent data across factory reset (rule 4○),

but is a deliberate deviation from this part of the model to

mitigate the threat of theft and factory reset ([T1][T2]).

11



René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker, and Nick Kralevich

6 RELATEDWORK
Classical operating system security models are primarily concerned

with defining access control (read/write/execute or more finely

granular) by subjects (but most often single users, groups, or roles)

to objects (typically files and other resources controlled by the OS,

in combination with permissions sometimes also called protection

domains [91]). The most common data structures for efficiently

implementing these relations (which, conceptually, are sparse ma-

trices) are Access Control Lists (ACLs) [83] and capability lists

(e.g. [100]). One of the first well-known and well-defined models

was the Bell-LaPadula multi-level security model [27], which de-

fined properties for assigning permissions and can be considered

the abstract basis for Mandatory Access Control and Type Enforce-

ment schemes like SELinux. Consequently, the Android platform

security model implicitly builds upon these general models and

their principle of least privilege.

One fundamental difference is that, while classical models as-

sume processes started by a user to be a proxy for their actions and

therefore execute directly with user privileges, more contemporary

models explicitly acknowledge the threat of malware started by a

user and therefore aim to compartmentalize their actions. Many

mobile OS (including Symbian as an earlier example) assign permis-

sions to processes (i.e. applications) instead of users, and Android

uses a comparable approach. A more detailed comparison to other

mobile OS is out of scope in this paper, and we refer to other sur-

veys [41, 64, 77] as well as previous analysis of Android security

mechanisms and how malware exploited weaknesses [4, 42, 46,

66–68, 103].

7 CONCLUSION
In this paper, we described the Android platform security model and

the complex threat model and ecosystem it needs to operate in. One

of the abstract rules is a multi-party consent model that is different

to most standard OS security models in the sense that it implicitly

considers applications to have equal veto rights over actions in the

same sense that the platform implementation and, obviously, users

have. While this may seem restricting from a user point of view, it

effectively limits the potential abuse a malicious app can do on data

controlled by other apps; by avoiding an all-powerful user account

with unfiltered access to all data (as is the default with most current

desktop/server OS), whole classes of threats such as file encrypting

ransomware or direct data exfiltration become impractical.

AOSP implements the Android platform security model as well

as the general security principles of ‘defense in depth’ and ‘safe

by default’. Different security mechanisms combine as multiple

layers of defense, and an important aspect is that even if security

relevant bugs exist, they should not necessarily lead to exploits

reachable from standard user space code. While the current model

and its implementation already cover most of the threat model that

is currently in scope of Android security and privacy considerations,

there are some deliberate special cases to the conceptually simple

security model, and there is room for future work:

• Keystore already supports API flags/methods to request

hardware- or authentication-bound keys. However, apps

need to use these methods explicitly to benefit from im-

provements like Strongbox. Making encryption of app files

or directories more transparent by supporting declarative

use similar to network security config for TLS connections

would make it easier for app developers to securely use these

features.

• It is common for malware to dynamically load its second

stage depending on the respective device it is being installed

on, to both try to exploit specific detected vulnerabilities and

hide its payload from scanning in the app store. One potential

mitigation is to require all executable code to: a) be signed by

a key that is trusted by the respective Android instance (e.g.

with public keys that are pre-shipped in the firmware and/or

can be added by end-users) or b) have a special permission

to dynamically load/create code during runtime that is not

contained in the application bundle itself (the APK file). This

could give better control over code integrity, but would still

not limit languages or platforms used to create these apps.

It is recognized that this mitigation is limited to executable

code. Interpreted code or server based configuration would

bypass this mitigation.

• Advanced attackers may gain access to OEM or vendor code

signing keys. Even under such circumstance, it is beneficial

to still retain some security and privacy assurances to users.

One recent example is the specification and implementation

of ’Insider Attack Resistance’ (IAR) for updateable code in

TRH [102], and extending similar defenses to higher-level

software is desirable [74]. Potential approaches could be

reproducible firmware builds or logs of released firmware

hashes comparable to e.g. Certificate Transparency [65].

• W ⊕ X memory is already a standard protection mechanism

in most current OS, including Android. However, pages that

are executable but not writable are typically still readable,

and such read access can leak e.g. the location of ROP gad-

gets. A potential improvement would be to restrict code

page access to only execute but not even read (execute-only

pages).

• Hardware level attacks are becoming more popular, and

therefore additional (software and hardware) defense against

e.g. RAM related attacks would add another layer of defense,

although, most probably with a trade-off in performance

overhead.

However, all such future work needs to be done considering its

impact on the wider ecosystem and should be kept in line with

fundamental Android security principles.

ACKNOWLEDGMENTS
We would like to thank Dianne Hackborn for her influential work

over a large part of the Android platform security history and in-

sightful remarks on earlier drafts of this paper. Additionally, we

thank Joel Galenson, Ivan Lozano, Paul Crowley, Shawn Willden,

Jeff Sharkey, and Xiaowen Xin for input on various parts, and

particularly Vishwath Mohan for direct contributions to the Au-

thentication section. We also thank the enormous number of se-

curity researchers (https://source.android.com/security/overview/

acknowledgements) who have improved Android over the years

and anonymous reviewers who have contributed highly helpful

feedback to earlier drafts of this paper.

12

https://source.android.com/security/overview/acknowledgements
https://source.android.com/security/overview/acknowledgements


The Android Platform Security Model

REFERENCES
[1] url: https://www.stonetemple.com/mobile-vs-desktop-

usage-study/ (visited on 2018-07-30).

[2] url: http://gs.statcounter.com/platform-market-share/

desktop-mobile-tablet (visited on 2018-07-30).

[3] url: https://kernsec.org/wiki/index.php/Exploit_Methods/

Userspace_execution (visited on 2018-07-30).

[4] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and

M. Smith. “SoK: Lessons Learned from Android Security

Research for Appified Software Platforms”. In: 2016 IEEE
Symposium on Security and Privacy (SP). May 2016, pp. 433–

451. doi: 10.1109/SP.2016.33.

[5] A. Adams and M. A. Sasse. “Users Are Not the Enemy”. In:

Commun. ACM 42.12 (Dec. 1999), pp. 40–46. issn: 0001-0782.

doi: 10.1145/322796.322806.

[6] A. Ahn. How we fought bad apps and malicious developers in
2017. Jan. 2018. url: https://android-developers.googleblog.
com/2018/01/how-we-fought-bad-apps-and-malicious.

html.

[7] B. B. Anderson, A. Vance, C. B. Kirwan, J. L. Jenkins, and

D. Eargle. “From Warning to Wallpaper: Why the Brain

Habituates to Security Warnings and What Can Be Done

About It”. In: Journal of Management Information Systems
33.3 (2016), pp. 713–743. doi: 10.1080/07421222.2016.12439

47.

[8] Android Enterprise Security White Paper. Sept. 2018. url:
https://source.android.com/security/reports/Google_A

ndroid_Enterprise_Security_Whitepaper_2018.pdf (visited

on 2018-11-14).

[9] Android Security 2017 Year In Review. Mar. 2018. url: https:

//source.android.com/security/reports/Google_Android_

Security_2017_Report_Final.pdf.

[10] AOSP. url: https://source.android.com/compatibility/cdd

(visited on 2018-11-14).

[11] AOSP. url: https://developer.android.com/guide/components/

intents-filters (visited on 2018-11-14).

[12] AOSP. url: https://developer.android.com/guide/topics/

manifest/manifest-intro (visited on 2018-11-14).

[13] AOSP. url: https://developer.android.com/guide/topics/

manifest/permission-element (visited on 2018-11-14).

[14] AOSP. url: https://source.android.com/security/keystore/

(visited on 2018-11-14).

[15] AOSP. url: https : / /developer . android . com/reference /

android/security/keystore/KeyGenParameterSpec (visited

on 2018-11-14).

[16] AOSP. url: https://source.android.com/security/authentication/

gatekeeper (visited on 2018-11-14).

[17] AOSP. url: https : / / developer . android . com / preview /

features/security%5C#android-protected- confirmation

(visited on 2018-11-14).

[18] AOSP. url: https : / / developer . android . com / training /

articles/security-config (visited on 2018-11-14).

[19] AOSP. url: https://source.android.com/security/verifiedboot/

verified-boot (visited on 2018-11-14).

[20] AOSP. url: https://android.googlesource.com/platform/

external/avb/+/pie-release/README.md (visited on 2018-

11-14).

[21] AOSP. url: https : / / developer . android . com / training /

articles/security-key-attestation (visited on 2018-11-14).

[22] AOSP. url: https://source.android.com/security/apksigning/

(visited on 2018-11-14).

[23] AOSP. url: https://www.android.com/enterprise/recommended/

requirements/ (visited on 2018-11-14).

[24] AOSP. Android platform permissions requesting guidance.
url: https://material.io/design/platform-guidance/android-

permissions.html#request-types (visited on 2019-03-06).

[25] AOSP. Security Updates and Resources - Process Types. url:
https://source.android.com/security/overview/updates-

resources#process_types.

[26] D. Austin and J. Vander Stoep. Hardening the media stack.
May 2016. url: https://android- developers .googleblog.

com/2016/05/hardening-media-stack.html.

[27] D. Bell and L. LaPadula. Secure Computer System Unified
Exposition and Multics Interpretation. Tech. rep. MTR-2997.

MITRE Corp., July 1975.

[28] J. Bender. Google Play security metadata and offline app
distribution. June 2018. url: https://android-developers.
googleblog.com/2018/06/google-play-security-metadata-

and.html.

[29] S. Bhatkar, D. C. DuVarney, and R. Sekar. “Address Obfus-

cation: An Efficient Approach to Combat a Board Range of

Memory Error Exploits”. In: Proc. USENIX Security Sympo-
sium - Volume 12. USENIX Association, 2003, pp. 8–8. url:

http://dl.acm.org/citation.cfm?id=1251353.1251361.

[30] BlueBorne. 2017. url: https://go.armis.com/hubfs/BlueB

orne%20-%20Android%20Exploit%20(20171130).pdf ?t=

1529364695784.

[31] C. Brubaker. Introducing nogotofail — a network traffic secu-
rity testing tool. Nov. 2014. url: https://security.googleblog.
com/2014/11/introducing-nogotofaila-network- traffic.

html.

[32] P. Carru. Attack TrustZone with Rowhammer. Apr. 2017.
url: http://www.eshard.com/wp-content/plugins/email-

before-download/download.php?dl=9465aa084ff0f070a3

acedb56bcb34f5.

[33] D. Cashman. SELinux in Android O: Separating Policy to
Allow for Independent Updates. Linux Security Summit. 2017.

url: https://events.static.linuxfound.org/sites/events/files/

slides/LSS%20-%20Treble%20%27n%27%20SELinux.pdf.

[34] H. Chen, N. Li, W. Enck, Y. Aafer, and X. Zhang. “Analy-

sis of SEAndroid Policies: Combining MAC and DAC in

Android”. In: Proceedings of the 33rd Annual Computer Secu-
rity Applications Conference. ACM, 2017, pp. 553–565. isbn:

978-1-4503-5345-8. doi: 10.1145/3134600.3134638.

[35] E. Cunningham. Improving app security and performance
on Google Play for years to come. Dec. 2017. url: https :
//android-developers.googleblog.com/2017/12/improving-

app-security-and-performance.html.

[36] CVE-2017-13177. Aug. 2017. url: https://cve.mitre.org/cgi-

bin / cvename . cgi ?name=CVE- 2017 - 13177 (visited on

2018-06-27).

13

https://www.stonetemple.com/mobile-vs-desktop-usage-study/
https://www.stonetemple.com/mobile-vs-desktop-usage-study/
http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://kernsec.org/wiki/index.php/Exploit_Methods/Userspace_execution
https://kernsec.org/wiki/index.php/Exploit_Methods/Userspace_execution
http://dx.doi.org/10.1109/SP.2016.33
http://dx.doi.org/10.1145/322796.322806
https://android-developers.googleblog.com/2018/01/how-we-fought-bad-apps-and-malicious.html
https://android-developers.googleblog.com/2018/01/how-we-fought-bad-apps-and-malicious.html
https://android-developers.googleblog.com/2018/01/how-we-fought-bad-apps-and-malicious.html
http://dx.doi.org/10.1080/07421222.2016.1243947
http://dx.doi.org/10.1080/07421222.2016.1243947
https://source.android.com/security/reports/Google_Android_Enterprise_Security_Whitepaper_2018.pdf
https://source.android.com/security/reports/Google_Android_Enterprise_Security_Whitepaper_2018.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/compatibility/cdd
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/guide/topics/manifest/permission-element
https://source.android.com/security/keystore/
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec
https://source.android.com/security/authentication/gatekeeper
https://source.android.com/security/authentication/gatekeeper
https://developer.android.com/preview/features/security%5C#android-protected-confirmation
https://developer.android.com/preview/features/security%5C#android-protected-confirmation
https://developer.android.com/training/articles/security-config
https://developer.android.com/training/articles/security-config
https://source.android.com/security/verifiedboot/verified-boot
https://source.android.com/security/verifiedboot/verified-boot
https://android.googlesource.com/platform/external/avb/+/pie-release/README.md
https://android.googlesource.com/platform/external/avb/+/pie-release/README.md
https://developer.android.com/training/articles/security-key-attestation
https://developer.android.com/training/articles/security-key-attestation
https://source.android.com/security/apksigning/
https://www.android.com/enterprise/recommended/requirements/
https://www.android.com/enterprise/recommended/requirements/
https://material.io/design/platform-guidance/android-permissions.html#request-types
https://material.io/design/platform-guidance/android-permissions.html#request-types
https://source.android.com/security/overview/updates-resources#process_types
https://source.android.com/security/overview/updates-resources#process_types
https://android-developers.googleblog.com/2016/05/hardening-media-stack.html
https://android-developers.googleblog.com/2016/05/hardening-media-stack.html
https://android-developers.googleblog.com/2018/06/google-play-security-metadata-and.html
https://android-developers.googleblog.com/2018/06/google-play-security-metadata-and.html
https://android-developers.googleblog.com/2018/06/google-play-security-metadata-and.html
http://dl.acm.org/citation.cfm?id=1251353.1251361
https://go.armis.com/hubfs/BlueBorne%20-%20Android%20Exploit%20(20171130).pdf?t=1529364695784
https://go.armis.com/hubfs/BlueBorne%20-%20Android%20Exploit%20(20171130).pdf?t=1529364695784
https://go.armis.com/hubfs/BlueBorne%20-%20Android%20Exploit%20(20171130).pdf?t=1529364695784
https://security.googleblog.com/2014/11/introducing-nogotofaila-network-traffic.html
https://security.googleblog.com/2014/11/introducing-nogotofaila-network-traffic.html
https://security.googleblog.com/2014/11/introducing-nogotofaila-network-traffic.html
http://www.eshard.com/wp-content/plugins/email-before-download/download.php?dl=9465aa084ff0f070a3acedb56bcb34f5
http://www.eshard.com/wp-content/plugins/email-before-download/download.php?dl=9465aa084ff0f070a3acedb56bcb34f5
http://www.eshard.com/wp-content/plugins/email-before-download/download.php?dl=9465aa084ff0f070a3acedb56bcb34f5
https://events.static.linuxfound.org/sites/events/files/slides/LSS%20-%20Treble%20%27n%27%20SELinux.pdf
https://events.static.linuxfound.org/sites/events/files/slides/LSS%20-%20Treble%20%27n%27%20SELinux.pdf
http://dx.doi.org/10.1145/3134600.3134638
https://android-developers.googleblog.com/2017/12/improving-app-security-and-performance.html
https://android-developers.googleblog.com/2017/12/improving-app-security-and-performance.html
https://android-developers.googleblog.com/2017/12/improving-app-security-and-performance.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13177
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13177


René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker, and Nick Kralevich

[37] CVE-2017-17558: Remote code execution in media frameworks.
June 2018. url: https : / / source . android . com / security /

bulletin/2018-06-01#kernel-components (visited on 2018-

06-27).

[38] CVE-2018-9341: Remote code execution in media frameworks.
June 2018. url: https : / / source . android . com / security /

bulletin/2018-06-01#media-framework (visited on 2018-06-

27).

[39] R. Dhamija, J. D. Tygar, and M. Hearst. “Why Phishing

Works”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2006, pp. 581–590. isbn:

1-59593-372-7. doi: 10.1145/1124772.1124861.

[40] D. Dolev and A. C.-c. Yao. “On the security of public key

protocols”. In: IEEE Transactions on Information Theory 29

(2 1983), pp. 198–208. doi: 10.1109/TIT.1983.1056650.

[41] A. Egners, B. Marschollek, and U. Meyer. Hackers in Your
Pocket: A Survey of Smartphone Security Across Platforms.
Tech. rep. 2012,7. RWTH Aachen University, Jan. 2012. url:

https://itsec.rwth-aachen.de/publications/ae_hacker_in_

your_pocket.pdf.

[42] W. Enck, M. Ongtang, and P. McDaniel. “Understanding

Android Security”. In: IEEE Security Privacy 7.1 (Jan. 2009),

pp. 50–57. issn: 1540-7993. doi: 10.1109/MSP.2009.26.

[43] S. Fahl, M. Harbach, T.Muders, L. Baumgärtner, B. Freisleben,

and M. Smith. “Why Eve and Mallory Love Android: An

Analysis of Android SSL (in)Security”. In: Proceedings of
the 2012 ACM Conference on Computer and Communications
Security. ACM, 2012, pp. 50–61. isbn: 978-1-4503-1651-4.

doi: 10.1145/2382196.2382205.

[44] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith.

“Rethinking SSL Development in an Appified World”. In:

Proceedings of the 2013 ACM SIGSAC Conference on Com-
puter &#38; Communications Security. ACM, 2013, pp. 49–60.

isbn: 978-1-4503-2477-9. doi: 10.1145/2508859.2516655.

[45] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R.

Govindan, and D. Estrin. “Diversity in Smartphone Usage”.

In: Proc. 8th International Conference on Mobile Systems,
Applications, and Services. ACM, 2010, pp. 179–194. isbn:

978-1-60558-985-5. doi: 10.1145/1814433.1814453.

[46] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur,

M. Conti, and M. Rajarajan. “Android Security: A Survey

of Issues, Malware Penetration, and Defenses”. In: IEEE
Communications Surveys Tutorials 17.2 (2015), pp. 998–1022.
issn: 1553-877X. doi: 10.1109/COMST.2014.2386139.

[47] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and D. A.

Wagner. “How to Ask for Permission”. In: HotSec. 2012.
[48] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wag-

ner. “Android Permissions: User Attention, Comprehension,

and Behavior”. In: Proceedings of the Eighth Symposium on
Usable Privacy and Security. ACM, 2012, 3:1–3:14. isbn: 978-

1-4503-1532-6. doi: 10.1145/2335356.2335360.

[49] E. Fernandes, Q. A. Chen, J. Paupore, G. Essl, J. A. Halder-

man, Z. M. Mao, and A. Prakash. “Android UI Deception

Revisited: Attacks and Defenses”. en. In: Financial Cryptog-
raphy and Data Security. Springer, Berlin, Heidelberg, Feb.
2016, pp. 41–59. isbn: 978-3-662-54969-8. doi: 10.1007/978-

3-662-54970-4_3.

[50] N. Fischer. Protecting WebView with Safe Browsing. Apr.
2018. url: https://android-developers.googleblog.com/

2018/04/protecting-webview-with-safe-browsing.html.

[51] Y. Fratantonio, C. Qian, S. Chung, and W. Lee. “Cloak and

Dagger: From Two Permissions to Complete Control of the

UI Feedback Loop”. In: Proceedings of the IEEE Symposium
on Security and Privacy (Oakland). May 2017.

[52] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh,

and V. Shmatikov. “The most dangerous code in the world:

validating SSL certificates in non-browser software”. In:

ACM Conference on Computer and Communications Security.
2012, pp. 38–49.

[53] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,

W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum,

and E. W. Felten. “Lest We Remember: Cold-boot Attacks

on Encryption Keys”. In: Commun. ACM 52.5 (May 2009),

pp. 91–98. issn: 0001-0782. doi: 10.1145/1506409.1506429.

[54] D. Hintze, R. D. Findling,M.Muaaz, S. Scholz, and R.Mayrhofer.

“Diversity in Locked and Unlocked Mobile Device Usage”.

In: Proceedings of the 2014 ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing: Adjunct
Publication (UbiComp 2014). ACM Press, 2014, pp. 379–384.

isbn: 978-1-4503-3047-3. doi: 10.1145/2638728.2641697.

[55] D. Hintze, R. D. Findling, S. Scholz, and R. Mayrhofer. “Mo-

bile Device Usage Characteristics: The Effect of Context

and Form Factor on Locked and Unlocked Usage”. In: Proc.
MoMM 2014: 12th International Conference on Advances in
Mobile Computing and Multimedia. ACM Press, Dec. 2014,

pp. 105–114. isbn: 978-1-4503-3008-4. doi: 10.1145/2684103.

2684156.

[56] D. Hintze, P. Hintze, R. D. Findling, and R. Mayrhofer. “A

Large-Scale, Long-Term Analysis of Mobile Device Usage

Characteristics”. In: Proc. ACM Interact. Mob.Wearable Ubiq-
uitous Technol. 1.2 (June 2017), 13:1–13:21. issn: 2474-9567.
doi: 10.1145/3090078.

[57] S. Höbarth and R. Mayrhofer. “A framework for on-device

privilege escalation exploit execution on Android”. In: Proc.
IWSSI/SPMU 2011: 3rd International Workshop on Security
and Privacy in Spontaneous Interaction and Mobile Phone
Use, colocated with Pervasive 2011. June 2011.

[58] Y. Jang, C. Song, S. P. Chung, T. Wang, and W. Lee. “A11Y

Attacks: Exploiting Accessibility in Operating Systems”. In:

Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM, 2014, pp. 103–

115. isbn: 978-1-4503-2957-6. doi: 10.1145/2660267.2660295.

[59] A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, and E.

Kirda. “Cutting the Gordian Knot: A Look Under the Hood

of Ransomware Attacks”. In:Detection of Intrusions andMal-
ware, and Vulnerability Assessment. Springer International
Publishing, 2015, pp. 3–24. isbn: 978-3-319-20550-2.

[60] E. Kline and B. Schwartz. DNS over TLS support in An-
droid P Developer Preview. Apr. 2018. url: https://android-
developers . googleblog . com / 2018 / 04 / dns - over - tls -

support-in-android-p.html.

[61] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M.

Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.

“Spectre Attacks: Exploiting Speculative Execution”. In:

14

https://source.android.com/security/bulletin/2018-06-01#kernel-components
https://source.android.com/security/bulletin/2018-06-01#kernel-components
https://source.android.com/security/bulletin/2018-06-01#media-framework
https://source.android.com/security/bulletin/2018-06-01#media-framework
http://dx.doi.org/10.1145/1124772.1124861
http://dx.doi.org/10.1109/TIT.1983.1056650
https://itsec.rwth-aachen.de/publications/ae_hacker_in_your_pocket.pdf
https://itsec.rwth-aachen.de/publications/ae_hacker_in_your_pocket.pdf
http://dx.doi.org/10.1109/MSP.2009.26
http://dx.doi.org/10.1145/2382196.2382205
http://dx.doi.org/10.1145/2508859.2516655
http://dx.doi.org/10.1145/1814433.1814453
http://dx.doi.org/10.1109/COMST.2014.2386139
http://dx.doi.org/10.1145/2335356.2335360
http://dx.doi.org/10.1007/978-3-662-54970-4_3
http://dx.doi.org/10.1007/978-3-662-54970-4_3
https://android-developers.googleblog.com/2018/04/protecting-webview-with-safe-browsing.html
https://android-developers.googleblog.com/2018/04/protecting-webview-with-safe-browsing.html
http://dx.doi.org/10.1145/1506409.1506429
http://dx.doi.org/10.1145/2638728.2641697
http://dx.doi.org/10.1145/2684103.2684156
http://dx.doi.org/10.1145/2684103.2684156
http://dx.doi.org/10.1145/3090078
http://dx.doi.org/10.1145/2660267.2660295
https://android-developers.googleblog.com/2018/04/dns-over-tls-support-in-android-p.html
https://android-developers.googleblog.com/2018/04/dns-over-tls-support-in-android-p.html
https://android-developers.googleblog.com/2018/04/dns-over-tls-support-in-android-p.html


The Android Platform Security Model

arXiv:1801.01203 [cs] (2018). url: http://arxiv.org/abs/1801.
01203.

[62] N. Kralevich. The Art of Defense: How vulnerabilities help
shape security features and mitigations in Android. Black-
Hat. 2016. url: https : / /www . blackhat . com / docs / us -

16/materials/us-16-%20Kralevich-The-Art-Of-Defense-H

ow-%20Vulnerabilities-Help-Shape-%20%5C%20Security-

Features-And-Mitigations-In-Android.pdf.

[63] J. Kraunelis, Y. Chen, Z. Ling, X. Fu, and W. Zhao. “On Mal-

ware Leveraging the Android Accessibility Framework”. In:

Mobile and Ubiquitous Systems: Computing, Networking, and
Services. Springer International Publishing, 2014, pp. 512–
523. isbn: 978-3-319-11569-6.

[64] M. La Polla, F. Martinelli, and D. Sgandurra. “A Survey on

Security for Mobile Devices”. In: 15 (Jan. 2013), pp. 446–471.

[65] B. Laurie, A. Langley, and E. Kasper.Certificate Transparency.
2013. url: https://www.rfc-editor.org/info/rfc6962 (visited

on 2018-06-29).

[66] L. Li, A. Bartel, J. Klein, Y. L. Traon, S. Arzt, S. Rasthofer, E.

Bodden, D. Octeau, and P. McDaniel. “I know what leaked

in your pocket: uncovering privacy leaks on Android Apps

with Static Taint Analysis”. In: arXiv:1404.7431 [cs] (Apr.
2014). url: http://arxiv.org/abs/1404.7431.

[67] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel,

D. Octeau, J. Klein, and L. Traon. “Static analysis of Android

apps: A systematic literature review”. In: Information and
Software Technology 88 (2017), pp. 67–95. issn: 0950-5849.

doi: 10.1016/j.infsof.2017.04.001.

[68] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y.

Fratantonio, V. v. d. Veen, and C. Platzer. “ANDRUBIS –

1,000,000 Apps Later: A View on Current Android Mal-

ware Behaviors”. In: 2014 Third International Workshop on
Building Analysis Datasets and Gathering Experience Re-
turns for Security (BADGERS). Sept. 2014, pp. 3–17. doi:
10.1109/BADGERS.2014.7.

[69] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S.

Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg.

“Meltdown”. In: arXiv:1801.01207 [cs] (2018). url: http://
arxiv.org/abs/1801.01207.

[70] T. Lodderstedt, M. McGloin, and P. Hunt. OAuth 2.0 Threat
Model and Security Considerations. Jan. 2013. url: https :
//www.rfc-editor.org/info/rfc6819.

[71] I. Lozano. Compiler-based security mitigations in Android P.
June 2018. url: https://android-developers.googleblog.com/

2018/06/compiler-based-security-mitigations-in.html.

[72] I. Malchev. Here comes Treble: A modular base for Android.
May 2017. url: https://android- developers .googleblog.

com/2017/05/here-comes-treble-modular-base-for.html.

[73] R. Mayrhofer. “An Architecture for Secure Mobile Devices”.

In: Security and Communication Networks (2014). issn: 1939-
0122. doi: 10.1002/sec.1028.

[74] R. Mayrhofer. “Insider Attack Resistance in the Android

Ecosystem”. In: Enigma 2019. USENIX Association, Jan.

2019.

[75] R. Mayrhofer, S. Sigg, and V. Mohan. “Adversary Models for

Mobile Device Authentication”. In: (). submitted for review.

[76] T. McDonnell, B. Ray, and M. Kim. “An Empirical Study of

API Stability and Adoption in the Android Ecosystem”. In:

2013 IEEE International Conference on Software Maintenance.
Sept. 2013, pp. 70–79. doi: 10.1109/ICSM.2013.18.

[77] I. Mohamed and D. Patel. “Android vs iOS Security: A Com-

parative Study”. In: 2015 12th International Conference on In-
formation Technology - New Generations. Apr. 2015, pp. 725–
730. doi: 10.1109/ITNG.2015.123.

[78] V. Mohan. Better Biometrics in Android P. June 2018. url:
https : / / android - developers . googleblog . com/2018 /06 /

better-biometrics-in-android-p.html.

[79] V. Nanda and R. Mayrhofer. Android Pie à la mode: Security
& Privacy. Dec. 2018. url: https : / / android - developers .
googleblog.com/2018/12/android-pie-la-mode-security-

privacy.html.

[80] S. Pichai. Android has created more choice, not less. July
2018. url: https://blog.google/around-the-globe/google-

europe/android-has-created-more-choice-not-less/.

[81] P. Riedl, R. Mayrhofer, A. Möller, M. Kranz, F. Lettner, C.

Holzmann, and M. Koelle. “Only play in your comfort zone:

interaction methods for improving security awareness on

mobile devices”. English. In: Personal and Ubiquitous Com-
puting (Mar. 2015), pp. 1–14. issn: 1617-4909. doi: 10.1007/

s00779-015-0840-5.

[82] F. Roesner, T. Kohno, E.Moshchuk, B. Parno, H. J.Wang, and

C. Cowan. “User-driven access control: Rethinking permis-

sion granting in modern operating systems”. In: Proceedings
of the 2012 IEEE Symposium on Security and Privacy, ser. SP
’12. 2012, pp. 224–238. doi: 10.1109/SP.2012.24.

[83] R. S. Sandhu and P. Samarati. “Access control: principle and

practice”. In: IEEE Communications Magazine 32.9 (Sept.

1994), pp. 40–48. issn: 0163-6804. doi: 10.1109/35.312842.

[84] N. Scaife, H. Carter, P. Traynor, and K. R. B. Butler. “Cryp-

toLock (and Drop It): Stopping Ransomware Attacks on

User Data”. In: 2016 IEEE 36th International Conference on
Distributed Computing Systems (ICDCS). June 2016, pp. 303–
312. doi: 10.1109/ICDCS.2016.46.

[85] A. Seshadri, M. Luk, N. Qu, and A. Perrig. “SecVisor: A

Tiny Hypervisor to Provide Lifetime Kernel Code Integrity

for Commodity OSes”. In: Proceedings of Twenty-first ACM
SIGOPS Symposium on Operating Systems Principles. ACM,

2007, pp. 335–350. isbn: 978-1-59593-591-5. doi: 10.1145/

1294261.1294294.

[86] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and

D. Boneh. “On the Effectiveness of Address-space Random-

ization”. In: Proceedings of the 11th ACM Conference on Com-
puter and Communications Security. ACM, 2004, pp. 298–

307. isbn: 1-58113-961-6. doi: 10.1145/1030083.1030124.

[87] S. Smalley and R. Craig. “Security Enhanced (SE) Android:

Bringing Flexible MAC to Android”. en. In: Proc. of NDSS
2013. Apr. 2013, p. 18.

[88] Stagefright Vulnerability Report. 2015. url: https://www.kb.
cert.org/vuls/id/924951.

[89] SVE-2018-11599: Theft of arbitrary files leading to emails and
email accounts takeover. May 2018. url: https://security.

samsungmobile.com/securityUpdate.smsb (visited on 2018-

06-27).

15

http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203
https://www.blackhat.com/docs/us-16/materials/us-16-%20Kralevich-The-Art-Of-Defense-How-%20Vulnerabilities-Help-Shape-%20%5C%20Security-Features-And-Mitigations-In-Android.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-%20Kralevich-The-Art-Of-Defense-How-%20Vulnerabilities-Help-Shape-%20%5C%20Security-Features-And-Mitigations-In-Android.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-%20Kralevich-The-Art-Of-Defense-How-%20Vulnerabilities-Help-Shape-%20%5C%20Security-Features-And-Mitigations-In-Android.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-%20Kralevich-The-Art-Of-Defense-How-%20Vulnerabilities-Help-Shape-%20%5C%20Security-Features-And-Mitigations-In-Android.pdf
https://www.rfc-editor.org/info/rfc6962
http://arxiv.org/abs/1404.7431
http://dx.doi.org/10.1016/j.infsof.2017.04.001
http://dx.doi.org/10.1109/BADGERS.2014.7
http://arxiv.org/abs/1801.01207
http://arxiv.org/abs/1801.01207
https://www.rfc-editor.org/info/rfc6819
https://www.rfc-editor.org/info/rfc6819
https://android-developers.googleblog.com/2018/06/compiler-based-security-mitigations-in.html
https://android-developers.googleblog.com/2018/06/compiler-based-security-mitigations-in.html
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
http://dx.doi.org/10.1002/sec.1028
http://dx.doi.org/10.1109/ICSM.2013.18
http://dx.doi.org/10.1109/ITNG.2015.123
https://android-developers.googleblog.com/2018/06/better-biometrics-in-android-p.html
https://android-developers.googleblog.com/2018/06/better-biometrics-in-android-p.html
https://android-developers.googleblog.com/2018/12/android-pie-la-mode-security-privacy.html
https://android-developers.googleblog.com/2018/12/android-pie-la-mode-security-privacy.html
https://android-developers.googleblog.com/2018/12/android-pie-la-mode-security-privacy.html
https://blog.google/around-the-globe/google-europe/android-has-created-more-choice-not-less/
https://blog.google/around-the-globe/google-europe/android-has-created-more-choice-not-less/
http://dx.doi.org/10.1007/s00779-015-0840-5
http://dx.doi.org/10.1007/s00779-015-0840-5
http://dx.doi.org/10.1109/SP.2012.24
http://dx.doi.org/10.1109/35.312842
http://dx.doi.org/10.1109/ICDCS.2016.46
http://dx.doi.org/10.1145/1294261.1294294
http://dx.doi.org/10.1145/1294261.1294294
http://dx.doi.org/10.1145/1030083.1030124
https://www.kb.cert.org/vuls/id/924951
https://www.kb.cert.org/vuls/id/924951
https://security.samsungmobile.com/securityUpdate.smsb
https://security.samsungmobile.com/securityUpdate.smsb


René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker, and Nick Kralevich

[90] SVE-2018-11633: Buffer Overflow in Trustlet. May 2018. url:

https://security.samsungmobile.com/securityUpdate.smsb

(visited on 2018-06-27).

[91] A. S. Tanenbaum and H. Bos.Modern Operating Systems. 4th.
Prentice Hall Press, 2014. isbn: 013359162X, 9780133591620.

[92] A. Tang, S. Sethumadhavan, and S. Stolfo. “CLKSCREW:

Exposing the Perils of Security-Oblivious Energy Manage-

ment”. In: 26th USENIX Security Symposium (USENIX Secu-
rity 17). USENIXAssociation, 2017, pp. 1057–1074. isbn: 978-

1-931971-40-9. url: https://www.usenix.org/conference/

usenixsecurity17/technical-sessions/presentation/tang.

[93] S. D. Tetali. Keeping 2 Billion Android devices safe with ma-
chine learning. May 2018. url: https://android-developers.

googleblog . com/2018 / 05 / keeping - 2 - billion - android -

devices-safe.html.

[94] S. Tolvanen. Hardening the Kernel in Android Oreo. Aug.
2017. url: https://android-developers.googleblog.com/

2017/08/hardening-kernel-in-android-oreo.html.

[95] J. Vander Stoep. Android: Protecting the Kernel. Linux Secu-
rity Summit. 2016. url: https://events.static.linuxfound.

org/sites /events / files / slides /Android- %20protecting%

20the%20kernel.pdf.

[96] J. Vander Stoep. Ioctl Command Whitelisting in SELinux.
Linux Security Summit. 2015. url: http://kernsec.org/files/

lss2015/vanderstoep.pdf.

[97] J. Vander Stoep. Shut the HAL up. July 2017. url: https :

//android-developers.googleblog.com/2017/07/shut-hal-

up.html.

[98] J. Vander Stoep and S. Tolvanen. Year in Review: Android
Kernel Security. Linux Security Summit. 2018. url: https:

//events.linuxfoundation.org/wp-content/uploads/2017/

11/LSS2018.pdf.

[99] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss,

C. Maurice, G. Vigna, H. Bos, K. Razavi, and C. Giuffrida.

“Drammer: Deterministic Rowhammer Attacks on Mobile

Platforms”. en. In: ACM Press, 2016, pp. 1675–1689. isbn:

978-1-4503-4139-4. doi: 10.1145/2976749.2978406.

[100] R. Watson. New approaches to operatng system security ex-
tensibility. Tech. rep. UCAM-CL-TR-818. Cambridge Univer-

sity, Apr. 2012. url: http://www.cl.cam.ac.uk/techreports/

UCAM-CL-TR-818.pdf.

[101] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wag-

ner, and K. Beznosov. “Android Permissions Remystified: A

Field Study on Contextual Integrity”. In: 24th USENIX Secu-
rity Symposium (USENIX Security 15). USENIX Association,

2015, pp. 499–514. isbn: 978-1-931971-232. url: https : / /

www.usenix.org/conference/usenixsecurity15/technical-

sessions/presentation/wijesekera.

[102] S. Willden. Insider Attack Resistance. May 2018. url: https:

//android-developers.googleblog.com/2018/05/insider-

attack-resistance.html.

[103] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S.

Wang, and B. Zang. “Vetting Undesirable Behaviors in An-

droid Apps with Permission Use Analysis”. In: Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Com-
munications Security. ACM, 2013, pp. 611–622. isbn: 978-1-

4503-2477-9. doi: 10.1145/2508859.2516689.

16

https://security.samsungmobile.com/securityUpdate.smsb
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://android-developers.googleblog.com/2018/05/keeping-2-billion-android-devices-safe.html
https://android-developers.googleblog.com/2018/05/keeping-2-billion-android-devices-safe.html
https://android-developers.googleblog.com/2018/05/keeping-2-billion-android-devices-safe.html
https://android-developers.googleblog.com/2017/08/hardening-kernel-in-android-oreo.html
https://android-developers.googleblog.com/2017/08/hardening-kernel-in-android-oreo.html
https://events.static.linuxfound.org/sites/events/files/slides/Android-%20protecting%20the%20kernel.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Android-%20protecting%20the%20kernel.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Android-%20protecting%20the%20kernel.pdf
http://kernsec.org/files/lss2015/vanderstoep.pdf
http://kernsec.org/files/lss2015/vanderstoep.pdf
https://android-developers.googleblog.com/2017/07/shut-hal-up.html
https://android-developers.googleblog.com/2017/07/shut-hal-up.html
https://android-developers.googleblog.com/2017/07/shut-hal-up.html
https://events.linuxfoundation.org/wp-content/uploads/2017/11/LSS2018.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/11/LSS2018.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/11/LSS2018.pdf
http://dx.doi.org/10.1145/2976749.2978406
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-818.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-818.pdf
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wijesekera
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wijesekera
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wijesekera
https://android-developers.googleblog.com/2018/05/insider-attack-resistance.html
https://android-developers.googleblog.com/2018/05/insider-attack-resistance.html
https://android-developers.googleblog.com/2018/05/insider-attack-resistance.html
http://dx.doi.org/10.1145/2508859.2516689

	Abstract
	1 Introduction
	2 Android background
	2.1 Ecosystem context
	2.2 Android security principles
	2.3 Threat model

	3 The Android Platform Security Model
	4 Implementation
	4.1 Consent
	4.2 Authentication
	4.3 Isolation and Containment
	4.4 Encryption of data at rest
	4.5 Encryption of data in transit
	4.6 Exploit mitigation
	4.7 System integrity
	4.8 Patching

	5 Special cases
	6 Related Work
	7 Conclusion

